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Abstract

Users and network administrators need ways to filter email messages based primarily on the rep-

utation of the sender. Unfortunately, conventional mechanisms for sender reputation—notably, IP

blacklists—are cumbersome to maintain and evadable. This paper investigates ways to infer the rep-

utation of an email sender based solely on network-level features, without looking at the contents of a

message. First, we study first-order properties of network-level features that may help distinguish spam-

mers from legitimate senders. We examine features that can be ascertained without ever looking at a

packet’s contents, such as the distance in IP space to other email senders or the geographic distance

between sender and receiver. We derive features that are lightweight, since they do not require seeing

a large amount of email from a single IP address and can be gleaned without looking at an email’s

contents—many such features are apparent from even a single packet. Second, we incorporate these

features into a classification algorithm and evaluate the classifier’s ability to automatically classify email

senders as spammers or legitimate senders. We build an automated reputation engine, SNARE, based on

these features using labeled data from a deployed commercial spam-filtering system. We demonstrate

that SNARE can achieve comparable accuracy to existing static IP blacklists: about a 70% detection

rate for less than a 0.3% false positive rate. Third, we show how SNARE can be integrated into existing

blacklists, essentially as a first-pass filter.

1 Introduction

Spam filtering systems use two mechanisms to filter spam: content filters, which classify messages based

on the contents of a message; and sender reputation, which maintains information about the IP address of

a sender as an input to filtering. Content filters (e.g., [15, 16]) can block certain types of unwanted email

messages, but they can be brittle and evadable, and they require analyzing the contents of email messages,

which can be expensive. Hence, spam filters also rely on sender reputation to filter messages; the idea is that

a mail server may be able to reject a message purely based on the reputation of the sender, rather than the

message contents. DNS-based blacklists (DNSBLs) such as Spamhaus [33] maintain lists of IP addresses

that are known to send spam. Unfortunately, these blacklists can be both incomplete and slow-to-respond to

new spammers [26]. This unresponsiveness will only become more serious as both botnets and BGP route

hijacking make it easier for spammers to dynamically obtain new, unlisted IP addresses [27, 28]. Indeed,

network administrators are still searching for spam-filtering mechanisms that are both lightweight (i.e., they

do not require detailed message or content analysis) and automated (i.e., they do not require manual update,

inspection, or verification).

Towards this goal, this paper presents SNARE (Spatio-temporal Network-level Automatic Reputation

Engine), a sender reputation engine that can accurately and automatically classify email senders based on

lightweight, network-level features that can be determined early in a sender’s history—sometimes even upon

seeing only a single packet. SNARE relies on the intuition that about 95% of all email is spam, and, of this,

75 − 95% can be attributed to botnets, which often exhibit unusual sending patterns that differ from those

of legitimate email senders. SNARE classifies senders based on how they are sending messages (i.e., traffic

patterns), rather than who the senders are (i.e., their IP addresses). In other words, SNARE rests on the

assumption that there are lightweight network-level features that can differentiate spammers from legitimate

senders; this paper finds such features and uses them to build a system for automatically determining an

email sender’s reputation.
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SNARE bears some similarity to other approaches that classify senders based on network-level behav-

ior [2, 14, 18, 20, 28], but these approaches rely on inspecting the message contents, gathering information

across a large number of recipients, or both. In contrast, SNARE is based on lightweight network-level fea-

tures, which could allow it to scale better and also to operate on faster traffic rates. In addition, SNARE

is more accurate than previous reputation systems that use network-level behavioral features to classify

senders: for example, SNARE’s false positive rate is an order of magnitude less than that in our previous

work [28] for a similar detection rate. It is the first reputation system that is both as accurate as existing

static IP blacklists and automated, to keep up with changing sender behavior.

Despite the advantages of automatically inferring sender reputation based on “network-level” features,

a major hurdle remains: We must identify which features effectively and efficiently distinguish spammers

from legitimate senders. Given the massive space of possible features, finding a collection of features that

classifies senders with both low false positive and low false negative rates is challenging. This paper identi-

fies thirteen such network-level features that require varying levels of information about senders’ history.

Different features impose different levels of overhead. Thus, we begin by evaluating features that can

be computed purely locally at the receiver, with no information from other receivers, no previous sending

history, and no inspection of the message itself. We found several features that fall into this category that

are surprisingly effective for classifying senders, including: The AS of the sender, the geographic distance

between the IP address of the sender and that of the receiver, the density of email senders in the surrounding

IP address space, and the time of day the message was sent. We also looked at various aggregate statistics

across messages and receivers (e.g., the mean and standard deviations of messages sent from a single IP

address) and found that, while these features require slightly more computation and message overhead, they

do help distinguish spammers from legitimate senders as well. After identifying these features, we analyze

the relative importance of these features and incorporate them into an automated reputation engine, based

on the RuleFit [12] ensemble learning algorithm.

To evaluate SNARE, we use logs from Secure Computing’s TrustedSource, a commercial reputation

system that filters spam for more than 8,000 distinct domains. These logs provide information about the

messages received at each of these domains, including the time of receipt, the IP address of the sender,

the size of the message, and various other “meta information” about each message. Using only features

from a single IP packet header, SNARE can identify spammers with more than 70% accuracy with only a

0.2% false-positive rate. Using features extracted from a single message and aggregates of these features

provides slight improvements, and adding an AS “whitelist” of the ASes that host the most commonly

misclassified senders reduces the false positive rate to 0.14%. This accuracy is roughly equivalent to that

of existing static IP blacklists like SpamHaus [33]; the advantage, however, is that SNARE is automated,

and it characterizes a sender based on it sending behavior, rather than its IP address, which may change

due to dynamic addressing, newly compromised hosts, or route hijacks. To further reduce false positives,

we investigate how SNARE can be integrated with a dynamically updated whitelist of “good” ASes that

send mostly legitimate email, and how it might be periodically retrained to maintain high accuracy. We

also discuss how SNARE might be integrated into existing spam filtering systems, and the extent to which a

spammer might be able to evade SNARE’s features.

The rest of this paper is organized as follows. Section 2 presents background on existing sender reputa-

tion systems and a possible deployment scenario for SNARE. Section 3 describes the network-level behav-

ioral properties of email senders and measures first-order statistics related to these features concerning both

spammers and legitimate senders. Section 4 evaluates SNARE’s performance using different feature subsets,

ranging from those that can be determined from a single packet to those that require some amount of history.

We investigate the potential to incorporate the classifier into a spam-filtering system at Section 5 . Section 6

discusses evasion and other limitations, Section 7 describes related work, and Section 8 concludes.

2



2 Background

In this section, we provide background on existing sender reputation mechanisms, present motivation for

improved sender reputation mechanisms (we survey other related work in Section 7), and illustrate the clas-

sification algorithm, especially RuleFit, to build the reputation engine. We also describe Secure Computing’s

TrustedSource system, which is both the source of the data used for our analysis and a possible deployment

scenario for SNARE.

2.1 Email Sender Reputation Systems

Today’s spam filters look up IP addresses in DNS-based blacklists (DNSBLs) to determine whether an

IP address is a known source of spam at the time of lookup. One commonly used public blacklist is

Spamhaus [33]; other blacklist operators include SpamCop [32] and SORBS [31]. Current blacklists two

main shortcomings. First, they only provide reputation at the granularity of IP addresses. Unfortunately, as

our earlier work observed [28], IP addresses of senders are dynamic: roughly 10% of spam senders on any

given day have not been previously observed. This study also observed that many spamming IP addresses

will go inactive for several weeks, presumably until they are removed from IP blacklists. This dynamism

makes maintaining responsive IP blacklists a manual, tedious, and inaccurate process; they are also often

coarse-grained, blacklisting entire prefixes—sometimes too aggressively—rather than individual senders.

Second, IP blacklists are typically incomplete: A previous study has noted that as much as 20% of spam

received at spam traps is not listed in any blacklists [27]. Finally, they are sometimes inaccurate: Anec-

dotal evidence is rife with stories of IP addresses of legitimate mail servers being incorrectly blacklisted

(e.g., because they were reflecting spam to mailing lists). To account for these shortcomings, commercial

reputation systems typically incorporate additional data such as SMTP metadata or message fingerprints to

mitigate these shortcomings [1]. Our previous work introduced “behavioral blacklisting” and developed a

spam classifier based on a single behavioral feature: the number of messages that a particular IP address

sends to each recipient domain [28]. This paper builds on the main theme of behavioral blacklisting by

finding better features that can classify senders earlier and are more resistant to evasion.

2.2 Data and Deployment Scenario

This section describes Secure Computing’s TrustedSource email sender reputation system. We describe

how we use the data from this system to study the network-level features of email senders and to evaluate

SNARE’s classification. We also describe how SNARE’s features and classification algorithms could be

incorporated into a real-time sender reputation system such as TrustedSource.

Data source TrustedSource is a commercial reputation system that allows lookups on various Internet

identifiers such as IP addresses, URLs, domains, or message fingerprints. It receives query feedback from

various different device types such as mail gateways, Web gateways, and firewalls. We evaluated SNARE

using the query logs from Secure Computing’s TrustedSource system over a seven-day period from October

22– November 04, 2007. Each received email generates a lookup to the TrustedSource database, so each

entry in the query log represents a single email that was sent from some sender to one of Secure Computing’s

TrustedSource appliances.

The logs contain many fields with metadata for each email message; Figure 1 shows a subset of the

fields that we ultimately use to develop and evaluate SNARE’s classification algorithms. The timestamp

field reflects the time at which the message was received at a TrustedSource appliance in some domain; the

source ip field reflects the source IP of the machine that issued the DNS query (i.e., the recipient of the

email); The query ip field is the IP address being queried (i.e., the IP address of the email sender). The

IP addresses of the senders are shown in the Hilbert space, as in Figure 2, where each pixel represents a
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Field Description

timestamp UNIX timestamp

ts server name Name of server that handles the query

score Score for the message based on a com-

bination of anti-spam filters

source ip Source IP in the packet (DNS server re-

laying the query to us)

query ip The IP being queried

body length Length of message body

count taddr Number of To-addresses

Figure 1: Description of data used from the Se-

cure Computing dataset.
Figure 2: Distribution of senders’ IP addresses

in Hilbert space for the one-week period of our

study. (The grey blocks are unused IP space.)2

/24 network prefix and the colors indicate the observed IP density in each block. The distribution of the

senders’ IP addresses show that the TrustedSource database collocated a representative set of email across

the Internet. We use many of the other features in Figure 1 as input to SNARE’s classification algorithms.

Due to the volume of the full set of logs, we used logs from a single TrustedSource server.

To help us label senders as either spammers or legitimate senders for both our feature analysis (Section 3)

and training (Sections 2.3 and 4), the logs also contain scores for each email message that indicate how

Secure Computing scored the email sender based on its current system. The score field indicates Secure

Computing’s sender reputation score, which we stratify into five labels: certain ham, likely ham, certain

spam, likely ham, and uncertain. Although these scores are not perfect ground truth, they do represent

the output of both manual classification and continually tuned algorithms that also operate on more heavy-

weight features (e.g., packet payloads). Our goal is to develop a fully automated classifier that is as accurate

as TrustedSource but (1) classifies senders automatically and (2) relies only on lightweight, evasion-resistant

network-level features.

Deployment scenario Because it operates only on network-level features of email messages, SNARE could

be deployed either as part of TrustedSource or as a standalone DNSBL. Our evaluation shows that SNARE’s

detection rate is higher than existing blacklists and its false positive rate is lower than many [9].

2.3 Supervised Learning Algorithm: RuleFit

Ensemble Learning: RuleFit Learning ensembles have been one of the popular predictive learning meth-

ods over the last decade. Their structural model takes the form

F (x) = a0 +
M∑

m=1

amfm(x) (1)

Where x are input variables derived form the training data (spatio-temporal features); fm(x) are different
functions called ensemble members (“base learner”) and M is the size of the ensemble; F (x) is the predic-
tive output (labels for “spam” or “ham”), which takes a linear combination of ensemble members. Given

the base learners, the technique determines the parameters for the learners by regularized linear regression

with a “lasso” penalty.

2A larger figure is available at http://www.gtnoise.net/snare/hilbert-fig2.png.
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Friedman and Popescu proposed RuleFit [12] to construct regression and classification problems as

linear combinations of simple rules. Because the number of base learners in this case can be large, the

authors propose using the rules in a decision tree as the base learners. Further to improve the accuracy, the

variables themselves are also included as basis functions. Moreover, fast algorithms for minimizing the loss

function [11] and the strategy to control the tree size can greatly reduce the computational complexity.

Variable Importance Another advantage of RuleFit is the interpretation. Because of its simple form, each

rule is easy to understand. The relative importance of the respective variables can be assessed after the

predictive model is built. Input variables that frequently appear in important rules or basic functions are

deemed more relevant. The importance of a variable xi is given as importance of the basis functions that

correspond directly to the variable, plus the average importance of all the other rules that involve xi. The

RuleFit paper has more details [12] for more details. In Section 4.3, we show the ranks of SNARE features.

Comparison to Other Algorithms There exist other classic classifier candidates, both of which we tested

on our dataset and both of which yielded poorer performance (i.e., higher false positive and lower detection

rates) than RuleFit. Support Vector Machine (SVM) [5] has been shown empirically to give good gener-

alization performance on a wide variety of problems such as handwriting recognition, face detection, text

categorization, etc. On the other hand, they do require significant parameter tuning before the best perfor-

mance can be obtained. If the training set is large, the classifier itself can take up a lot of storage space and

the classifying new data points will be correspondingly slower since the classification cost is O(S) for each
test point, where S is the number of support vectors. The computational complexity of SVM conflicts with

SNARE’s goal to make decision fast (at line rate). Decision Tree [24] is another type of popular classifica-

tion method. The resulting classifier is simple to understand and faster, with the prediction on a new test

point taking O(log(N)), where n is the number of nodes in the trained tree. Unfortunately, decision tree

compromises accuracy: its high false positive rates make it less than ideal for our purposes.

3 Network-level Features for Identifying Spammers

In this section, we explore various spatio-temporal features of email senders and discuss why these properties

are relevant and useful for differentiating spammers from legitimate senders. We categorize the features we

analyze by increasing level of overhead:

• Single packet features are those that can be determined with no previous history from the IP address

that SNARE is trying to classify, and given only a single packet from the IP address in question

(Section 3.1).

• Single-header and single-message features can be gleaned from a single SMTP message header or

email message (Section 3.2).

• Aggregate features can be computed with varying amounts of history (i.e., aggregates of other fea-

tures) (Section 3.3).

Each class of features contains those that may be either purely local to a single receiver or aggregated across

multiple receivers; the latter implies that the reputation system must have some mechanism of aggregating

features in the network. In the following sections, we describe features in each of these classes, explain the

intuition behind selecting that feature, and compare the feature in terms of spammers vs. legitimate senders.

No single feature needs to be perfectly discriminative between ham and spam. Actually the analysis

below shows that it is unrealistic to have a single perfect feature to make optimal resolution. As we describe

in Section 2.3, SNARE’s classification algorithm uses a combination of these features to build the best

classifier. We do, however, evaluate SNARE’s classifier using these three different classes of features to

see how well it can perform using these different classes. Specifically, we evaluate how well SNARE’s
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Figure 3: Spatial differences between spammers and legitimate senders

classification works using only single-packet features to determine how well such a lightweight classifier

would perform; we then see whether using additional features improves classification.

3.1 Single-Packet Features

In this section, we discuss some properties for identifying a spammer that rely only on a single packet

from the sender IP address. In some cases, we also rely on auxiliary information, such as routing table

information, sending history from neighboring IP addresses, etc., not solely information in the packet itself.

We first discuss the features that can be extracted from just a single IP packet: the geodesic distance between

the sender and receiver, sender neighborhood density, probability ratio of spam to ham at the time-of-day

the IP packet arrives, AS number of the sender and the status of open ports on the machine that sent the

email. The analysis is based on the Secure Computing data from October 22–28, 2007 inclusive (7 days). 3

3.1.1 Sender-receiver geodesic distance: Spam travels further

Recent studies suggest that social structure between communicating parties could be used to effectively

isolate spammers [3,13]. Based on the findings in these studies, we hypothesized that legitimate emails tend

to travel shorter geographic distances, whereas the distance traveled by spam will be closer to random. In

other words, a spam message may be just as likely to travel a short distance as across the world.

Figure 3(a) shows that our intuition is roughly correct: the distribution of the distance between the sender

and the target IP addresses for each of the four categories of messages. The distance used in these plots is

the geodesic distance, that is, the distance along the surface of the earth. It is computed by first finding the

physical latitude and longitude of the source and target IP using the MaxMind’s GeoIP database [21] and

then computing the distance between these two points. These distance calculations assume that the earth is

a perfect sphere. For certain ham, 90% of the messages travel about 2,500 miles or less. On the other hand,

for certain spam, only 28% of messages stay within this range. In fact, about 10% of spam travels more

than 7,000 miles, which is a quarter of the earth’s circumference at the equator. These results indicate that

geodesic distance is a promising metric for distinguishing spam from ham, which is also encouraging, since

it can be computed quickly using just a single IP packet.

3The evaluation in Section 4 uses the data from October 22–November 04, 2007 (14 days), some of which are not included in

the data trace used for measurement study.
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3.1.2 Sender IP neighborhood density: Spammers are surrounded by other spammers

Most spam messages today are generated by botnets [27, 34]. For messages originating from the same

botnet, the infected IP addresses may all lie close to one another in the numerical space, often even within

the same subnet. One way to detect whether an IP address belongs to a botnet is to look at the past history

and determine if messages have been received from other IPs in the same subnet as the current sender, where

the subnet size can be determined experimentally. If many different IPs from the same subnet are sending

email, the chances that the whole subnet is infested with bots are very high.

The problem with simply using subnet density is that the frame of reference does not transcend the

subnet boundaries. A more flexible measure of email sender density in an IP’s neighborhood is the distances

to its k nearest neighbors. The distance to the k nearest neighbors can be computed by treating the IPs as

set of numbers from 0 to 232
− 1 (for IPv4) and finding the nearest neighbors in this single dimensional

space. We can expect these distances to exhibit different patterns for spam and ham. If the neighborhood

is crowded, these neighbor distances will be small, indicating the possible presence of botnet. In normal

circumstances, it would be unusual to see a large number of IP addresses sending email in a small IP address

space range (one exception might be a cluster of outbound mail servers, so choosing a proper threshold is

important, and an operator may need to evaluate which threshold works best on the specific network where

SNARE is running).

The average distances to the 20 nearest neighbors of the senders is shown in Figure 3(b). The x-axis

indicates how many nearest neighbors in IP space, and the y-axis shows the average distance in the sample

to that many neighbors. The figure reflects the fact that a large majority of spam originates from hosts have

high email server density in a given IP region. The distance to the kth nearest neighbor for spam tends to be

much shorter on average than it is for legitimate senders, indicating that spammers generally reside in areas

with higher densities of email senders (in terms of IP address space).

3.1.3 Time-of-day: Spammers send messages according to machine off/on patterns
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Figure 4: Differences in diurnal sending pat-

terns of spammers and legitimate senders.

Another feature that can be extracted using information

from a single packet is the time of day when the message

was sent. We use the local time of day at the sender’s

physical location, as opposed to Coordinated Universal

Time (UTC). The intuition behind this feature is that lo-

cal legitimate email sending patterns may more closely

track “conventional” diurnal patterns, as opposed to spam

sending patterns.

Figure 4 shows the relative percentage of messages

of each type at different times of the day. The legitimate

senders and the spam senders show different diurnal pat-

terns. Two times of day are particularly striking: the rel-

ative amount of ham tends to ramp up quickly at the start

of the work-day and peaks in the early morning. Volumes

decrease relatively quickly as well at the end of the work-

day. On the other hand spam increases at a slower, steadier pace, probably as machines are switched on

in the morning. The spam volume stays steady throughout the day and starts dropping around 9:00 p.m.,

probably when machines are switched off again. In summary, legitimate senders tend to follow workday

cycles, and spammers tend to follow machine power cycles.

To use the timestamp as a feature, we compute the probability ratio of spam to ham at the time of the

day when the message is received. First, we compute the a priori spam probability during some hour of
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the day, t, ps,t, as ps,t = ns,t/ns, where ns,t is the number of spam messages received in hour t, and ns is

the number of spam messages received over the entire day. We can compute the a priori ham probability

for some hour t, ph,t in a similar fashion. The probability ratio, rt is then simply ps,t/ph,t. When a new

message is received, the precomputed spam to ham probability ratio for the corresponding hour of the day

at the senders timezone, rt can be used as a feature; this ratio can be recomputed on a daily basis.

3.1.4 AS number of sender: A small number of ASes send a large fraction of spam

As previously mentioned, using IP addresses to identify spammers has become less effective for several

reasons. First, IP addresses of senders are often transient. The compromised machines could be from dial-

up users, which depend on dynamic IP assignment. If spam comes form mobile devices (like laptops), the

IP addresses will be changed once the people carry the devices to a different place. In addition, spammers

have been known to adopt stealthy spamming strategies where each bot only sends several spam to a single

target domain, but overall the botnets can launch huge amount of spam to many domains [27]. The low

emission-rate and distributed attack requires to share information across domains for detection.

On the other hand, previous study has revealed that a significant portion of spammers come from a

relatively small collection of ASes [27]. More importantly, the ASes responsible for spam differ from those

that send legitimate email. As a result, the AS numbers of email senders could be a promising feature for

evaluating the senders’ reputation. Over the course of the seven days in our trace, more than 10% of unique

spamming IPs (those sending certain spam) originated from only 3 ASes; the top 20 ASes host 42% of

spamming IPs. Although our previous work noticed that a small number of ASes originated a large fraction

of spam [27], we believe that this is the first work to suggest using the AS number of the email sender as

input to an automated classifier for sender reputation.

3.1.5 Status of service ports: Legitimate mail tends to originate from machines with open ports

An increasing amount of spam originates from botnets. If servers could distinguish between a legitimate

sender and a compromised common host, spamming scheme on botnets meets serious challenge. The in-

tuition is that the bots usually send spam directly to the victim domain’s mail servers, while the legitimate

email is handed over from other domains’ MSA (Mail Submission Agent). The techniques of reverse DNS

(rDNS) and (Forward Confirmed Reverse DNS (FCrDNS) have been widely used to check whether the

email is from dial-up users, dynamically assigned addresses and mail servers will refuse email from such

sources [10].

We propose an additional feature that is orthogonal to DNSBL or rDNS checking. Outgoing mail servers

open specific ports to expect users’ connection, while the bots are compromised hosts, where the well-known

service ports are closed (require root privilege to open). When packets reach the mail server, it issues an

active probe sent to the source host to scan the following four ports that are commonly used for outgoing

mail service: 25 (SMTP), 465 (SSL SMTP), 80 (HTTP) and 443 (HTTPS), which are associated with

outgoing mail services. Figure 5 shows the percentages and the numbers of opening ports for spam and ham

categories respectively. The statistics are calculated by randomly sampling 10% of the senders’ IPs from the

dataset for port scanning. In the spam case, 87% of spamming IP addresses have none of the standard mail

service ports open; in contrast, half of the legitimate email comes from machines listening on at least one

mail service port. Although firewalls might block the probing attempts (which causes the legitimate mail

servers show no port listening), the status of the email-related ports still appears highly correlated with the

distinction of the senders. When providing this feature as input to a classifier, we represent it as a bitmap (4

bits), where each bit indicates whether the sender IP is listening on a particular port.
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Figure 5: Distribution of number of open ports on hosts sending spam and legitimate mail.

3.2 Single-Header and Single-Message Features

In this section, we discuss other features that can be extracted from a single SMTP header or message: the

number of recipients in the message, and the length of the message. We distinguish these features from

those in the previous section, since extracting these features actually requires opening an SMTP connection,

accepting the message, or both. Once a connection is accepted, and the SMTP header and subsequently, the

compete message are received. At this point, a spam filter could extract additional non-content features.

3.2.1 Number of recipients: Spam tends to have more recipients

The features discussed so far can be extracted from a single IP packet from any given specific IP address

combined with some historical knowledge of messages from other IPs. Another feature available without

looking into the content is the number of address in “To” field of the header. This feature can be extracted

after receiving the whole SMTP header but before accepting the message body. However, the majority of

messages only have one address listed. Over 94% of spam and 96% of legitimate email is sent to a single

recipient. Figure 6 shows the distribution of number of addresses on the “To” field for each category of

messages for all emails that are sent to more than one recipient. The x-axis is on a log-scale to focus the

plot on the smaller values where most of the data is concentrated. Based on this plot and looking at the

actual values, it appears that if there are very large number of recipients on the “To” field (100 or more),

there doesn’t seem to be a significant difference between the different types of senders for this measure.

The noticeable differences around 2 to 10 addresses show that, generally, ham has fewer recipients (close

to 2) while spam is sent to multiple addresses (close to 10). (We acknowledge that this feature is probably

evade-able and discuss this in more detail in Section 6.1).

3.2.2 Message size: Legitimate mail has variable message size; spam tends to be small

Once an entire message has been received, the email body size in bytes is also known. Because a given spam

sender will mostly send same or similar content in all the messages, it can be expected that the variance in

the size of messages sent by a spammer will be lower than among the messages sent by a legitimate sender.

To stay effective, the spam bots also need to keep the message size small so that they can maximize the

number of messages they can send out. As such the spam messages can be expected to be biased towards

the smaller size. Figure 7 shows the distribution of messages for each category. The spam messages are
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Figure 7: Distribution of message size (in bits)

for the different categories of messages

all clustered in the 1-10Kb range, whereas the distribution of message size for legitimate senders is more

evenly distributed. Thus, the message body size is another property of messages than may help differentiate

spammers from legitimate senders.

3.3 Aggregate Features

The behavioral properties discussed so far can all be constructed using a single message. If some of his-

tory from an IP is available, some aggregate IP-level features can also be constructed. Given information

about multiple messages from a single IP address, the overall distribution of the following measures can be

captured by using a combination of mean and variance of: (1) geodesic distance between the sender and

recipient, (2) number of recipients in the “To” field of the SMTP header, and (3) message body length in

bytes. By summarizing behavior over multiple messages and over time, these aggregate features may yield

a more reliable prediction. On the flip side, computing these features comes at the cost of increased latency

as we need to collect a number of messages before we compute these. By averaging over multiple messages,

these features may also smooth the structure of the feature space, making marginal cases harder to classify.

4 Building and Evaluating a Reputation Engine

In this section, we evaluate the performance of SNARE’s RuleFit classification algorithm using different sets

of features: those just from a single packet, those from a single header or message, and aggregate features.

4.1 Setup

For this evaluation, we used the total fourteen days of data from the traces, from October 22, 2007 to

November 4, 2007, part of which are different from the analysis data in Section 3; we used a different set of

data to ensure that the features we discovered using our analysis would still hold in later weeks.

Training We first collected the features for each message for a subset of the trace. We then randomly

sampled 1,000,000 messages from each day on average, where the volume ratio of spam to ham is the

10



(a) Single Packet

Classified as

Spam Ham

Spam 70% 30%

Ham 0.44% 99.56%

(b) Single Header/Message

Classified as

Spam Ham

Spam 70% 30%

Ham 0.29% 99.71%

(c) 24+ Hour History

Classified as

Spam Ham

Spam 70% 30%

Ham 0.20% 99.80%

Table 1: SNARE performance using RuleFit on different sets of features using covariant shift. Detection and

false positive rates are shown in bold. (The detection is fixed at 70% for comparison, in accordance with

today’s DNSBLs [9]).

same as the original data (i.e., 5% ham and 95% spam). Note that only our evaluation was based on this

sampled dataset, not the feature analysis from Section 3, so the selection of those features should not have

been affected by sampling. We then intentionally sampled equal amounts of spam as the ham data (30,000

messages in each categories for each day) to train the classifier because training requires that each class

have an equal number of samples. In practice spam volume is too huge, and much spam might be discarded

before entering the SNARE engine, so the operation of sampling on spam for training is reasonable.

Validation We evaluated the classifier using covariate shift, which is done by splitting the dataset into

subsets along the time sequence, training on the subsets of the data in a time window testing using the next

subset, and move the time window forward. This process is repeated ten times (testing on October 26, 2007

to November 04, 2007), with each subset accounting for one-day data and the time window set as 3 days

(which indicates that long-period history is not required). For each round, we compute the detection and

false positive rates, and then compute the average over all trials.

Summary Due to the high sampling rate that we used for this experiment, we repeated the above experiment

for several trials to ensure that the results were consistent across trials. As the results in this section show,

detection rates are approximately 70% and false positive rates are approximately 0.4%, even when the

classifier is based only on single-packet features. The false positive will drop to less 0.2% with the same

70% detection as the classifier incorporates additional features. Although this false positive rate is likely

still too high for SNARE to subsume all other spam filtering techniques, we believe that the performance

may be good enough to be used in conjunction with other methods, perhaps as an early-stage classifier, or

as a substitute for conventional IP reputation systems (e.g., SpamHaus).

4.2 Accuracy of Reputation Engine

In this section, we evaluate SNARE’s accuracy on three different groups of features. Surprisingly, we find

that, even relying on only single-packet features, SNARE can automatically distinguish spammers from

legitimate senders. Adding additional features based on single-header or single-message, or aggregates of

these features based on 24 hours of history, improves the accuracy further.

4.2.1 Single-Packet Features

When a mail server receives a new connection request, the server can provide SNARE with the IP addresses

of the sender and the recipient and the time-stamp based on the TCP SYN packet alone. Recall from

Section 3 even if SNARE has never seen this IP before, it can still combine this information with recent

history of behavior of other email servers and construct the following features: (1) geodesic distance between

the sender and the recipient, (2) average distance to the 20 nearest neighbors of the sender in the log,

(3) probability ratio of spam to ham at the time the connection is requested (4) AS number of the sender’s

11
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Figure 9: ROC on fresh IPs in SNARE.

IP, and (5) status of the email-service ports on the sender.

To evaluate the effectiveness of these features, we trained RuleFit on these features. The dash-dot curve

in Figure 8 demonstrate the ROC curve of SNARE’s reputation engine. The fp = 0.2% and tp = 70% statistic

refers to the curve with 24-hour history; other experiments had very similar false positive rates for a detection

rate of 70%. We check the false positive given a fixed true positive, 70% . The confusion matrices are shown

in Table 1(a). Just over 0.44% of legitimate email gets labelled as spam. This is a significant result since

it uses features constructed from limited amount of data and just a single IP packet from the candidate IP.

Sender reputation system will be deployed in conjunction with a combination of other techniques including

content based filtering. As such, as a first line of defense, this system will be very effective in eliminating a

lot of undesired senders. In fact once a sender is determined to be spammer, the mail server does not even

need to accept the connection request, saving network bandwidth and computational resources.

4.2.2 Single-Header and Single-Message Features

Single packet features allow SNARE to rapidly identify and drop connections from spammers even before

looking at the message header. Once a mail server has accepted the connection and examined at the whole

message, we can make further determination of sender reputation with increased confidence. As described

in Section 3.2, these features include the number of recipients and message body length. Table 1(b) shows

the prediction accuracy when we combine the single-packet features (i.e., those from the previous section)

with these additional features. As the results from Section 3 suggest, adding the message body length and

number of recipients to the set of features further improves SNARE’s detection rate and false positive rate.

It is worth mentioning that the number of recipients listed on the “To” field is perhaps somewhat evade-

able: a sender could list the target email addresses on “Cc” and “Bcc” fields. Besides, if the spammers

always place a single recipient address in the “To” field, this value will be the same as the large majority

of legitimate messages. This experiment only validates this intuitive fact. Since we did not have logs of

additional fields in the SMTP header beyond the count of email addresses on the “To” field, we could not

evaluate whether considering number of recipients listed under “Cc” and “Bcc” headers is worthwhile.

12



rank Feature Description

1 AS number of the sender’s IP

2 average of message length in previous 24 hours

3 average distance to the 20 nearest IP neighbors of the sender in the log

4 standard deviation of message length in previous 24 hours

5 status of email-service ports on the sender

6 geodesic distance between the sender and the recipient

7 number of recipient

8 average geodesic distance in previous 24 hours

9 average recipient number in previous 24 hours

10 probability ratio of spam to ham when getting the message

11 standard deviation of recipient number in previous 24 hours

12 length of message body

13 standard deviation of geodesic distance in previous 24 hours

Table 2: Ranking of feature importance in SNARE.

4.2.3 Aggregate Features

In this section, we evaluate the effectiveness of aggregate features constructed by combining history from

multiple messages from a single sender. With the exception of distances to k nearest neighbors, the rest

of the features here will be different from the previously evaluate per-message features since values from

multiple messages are aggregated. If multiple messages from a sender are available, the following features,

in addition to k nearest neighbor distances, can be computed: the mean and variance of geodesic distances,

message body lengths and number of recipients. We evaluate a classifier that is trained on aggregate statistics

from the past 24 hours together with the features from previous sections.

Table 1(c) shows the performance of RuleFit with these aggregate features. Applying the aggregate

features decreases the error rate further: 70% of spam is identified correctly, while the false positive rate

is merely 0.20%. The content-based filtering is very efficient to identify spam, but can not satisfy the

requirement of processing huge amount of messages for big mail servers. The prediction phase of RuleFit is

faster, where the query is traversed from the root of the decision tree to a bottom label. Given the low false

positive rate, SNARE would be a perfect first-line defense system, where the suspect messages are dropped

or re-routed to a farm for further analysis.

4.3 Other Considerations

Detection of “fresh” spammers We check the data trace and find out the IP addresses not showing up in

the previous training window, and further investigate the detection accuracy for those ‘fresh’ spammers with

all SNARE’s features. If fixing the true positive as 70%, the false positive will increase to 5.2%, as shown in

Figure 9. Compared with Figure 8, the decision on the new legitimate users becomes worse, but most of the

new spammers can still be identified.

Relative importance of individual features We use the fact that RuleFit can evaluate the relative impor-

tance of the features we have examined in Sections 3 and 2.3. Table 2 ranks all spatio-temporal features with

the importance values (with the most important feature at top). The top three features—AS num, avg length

and neig density—play an important role in separating out spammers from good senders. This result is quite

promising, since most of these features are lightweight: Better yet, two of these three can be computed

having received only a single packet from the sender. As we discussed in Section 6, they are also relatively

resistant to evasion.
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Figure 10: SNARE framework

5 Incorporating the Classifier into a Spam-Filtering System

This section describes how SNARE’s reputation engine could be integrated into an overall spam-filtering

system that includes a whitelist and an opportunity to continually retrain the classifier on labeled data (e.g.,

from spam traps, user inboxes, etc.). Because SNARE’s reputation engine still has a non-zero false positive

rate, we show how it might be incorporated with mechanisms that could help further improve its accuracy,

and also prevent discarding legitimate mail even in the case of some false positives. We propose an overview

of the system and evaluate the benefits of these two functions on overall system accuracy.

5.1 System Overview

Figure 10 shows the overall system framework. The system need not reside on a single server. Large public

email providers might run their own instance of SNARE, since they have plenty of email data and processing

resources. Smaller mail servers might query a remote SNARE server. We envision that SNARE might be

integrated into the workflow in the following way:

1. Email arrival. After getting the first packet, the mail server can submit a query to SNARE server

(only the source and destination IP). Mail servers can choose to send more information to SNARE

after getting the SMTP header or the whole message. Sending queries on a single packet or on a

message is a tradeoff between detection accuracy and processing time for the email (i.e. sending the

request early will make mail server get the response early). The statistics of messages in the received

queries will be used to build up the SNARE classifier.

2. Whitelisting. The queries not listed in the whitelist will be passed to SNARE’s reputation engine

(presented in Section 2.3) before any spam-filtering checks or content-based analysis. The output is a

score, where, by default, positive value means likely spam and negative value means likely ham; and

the absolute values represent the confidence of the classification. Administrators can set a different

score threshold to make tradeoff between the false positive and the detection rate. We evaluate the

benefits of whitelisting in Section 5.2.1.

3. Greylisting and content-based detection. Once the reputation engine calculates a score, the email

will be delivered into different queues. More resource-sensitive and time-consuming detection meth-

ods (e.g., content-based detection) can be applied at this point. When the mail server has capability

to receive email, the messages in ham-like queue have higher priority to be processed, whereas the

messages in spam-like queue will be offered less resources. This policy allows the server to speed up

processing the messages that SNARE classifies as spam. The advantages of this hierarchical detecting

scheme is that the legitimate will be delivered to users’ inbox sooner. Messages in the spam-like
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ASes.

queue could be shunted to more resource-intensive spam filters before they are ultimately dropped.4

4. Retraining Whether the IP addresses sends spam or legitimate mail in that connection is not known

at the time of the request, but is known after mail processed by the spam filter. SNARE depends on

accurately labelled training data. The email will eventually receive more careful checks (shown as

“Retrain” in Figure 10). The results from those filters are considered as ground-truth and can be used

as feedback to dynamically adjust the SNARE threshold. For example, when the mail server has spare

resource or much email in the spam-like queue is considered as legitimate later, SNARE system will

be asked to act more generous to score email as likely ham; on the other hand, if the mail server is

overwhelmed or the ham-like queue has too many incorrect labels, SNAREwill act stingy to put email

into ham-like queue. Section 5.2.2 evaluates the benefits or retraining for different intervals.

5.2 Evaluation

In this section, we evaluate how the two additional functions (whitelisting and retraining) improve SNARE’s

overall accuracy.

5.2.1 Benefits of Whitelisting

We believe that a whitelist can help reduce SNARE’s overall false positive rate. To evaluate the effects of

such a whitelist, we examined the features associated with the false positives, and determine that, 43% of all

of SNARE’s false positives for a single day originate from just 10 ASes. Figure 11 shows this distribution in

more detail. We examine this characteristic for different days and found that 30% to 40% of false positives

from any given day originate from the top 10 ASes. Unfortunately, however, these top 10 ASes do not

remain the same from day-to-day, so the whitelist may need to periodically be retrained. It may also be the

case that other features besides AS number of the source provide an even better opportunity for whitelisting.

We leave the details of refining the whitelist for future work.

4Although SNARE’s detection rates are quite low, some operators may feel that any non-zero chance that legitimate mail or

sender might be misclassified warrants at least a second-pass through a more rigorous filter.
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Figure 13: ROC using previous training rules to classify future messages.

Figure 12 shows the average ROC curve when we whitelist the top 50 ASes responsible for most misclas-

sified ham in each day. This whitelisting reduces the best possible detection rate considerably (effectively

because about 11% of spam originates from those ASes). However, this whitelisting also reduces the false

positive rate to about 0.14% for a 70% detection rate. More aggressive whitelisting, or whitelisting of other

features, could result in even lower false positives.

5.2.2 Benefits of Retraining

Setup Because email sender behavior is dynamic, training SNARE on data from an earlier time period may

eventually grow stale. To examine the requirements for periodically retraining the classifier, we train SNARE

based on the first 3 days’ data (through October 23–25, 2007) and test on the following 10 days. As before,

we use 1,000,000 randomly sampled spam and ham messages to test the classifier for each day.

Results Figure 13 shows the false positive and false negative on 3 future days, October 26, October 31,

and November 4, 2007, respectively. The prediction on future days will become more inaccurate with time

passage. For example, on November 4 (ten days after training), the false positive rate has dropped given

the same true positive on the ROC curve. This result suggests that, for the spammer behavior in this trace,

retraining SNARE’s classification algorithms daily should be sufficient to maintain accuracy. (We expect

that the need to retrain may vary across different datasets.)

6 Discussion and Limitations

In this section, we address various aspects of SNARE that may present practical concerns. We first discuss

the extent to which an attacker might be able to evade various features, as well as the extent to which

these features might vary across time and datasets. We then discuss scalability concerns that a production

deployment of SNARE may present, as well as various possible workarounds.

6.1 Evasion-Resistance and Robustness of Features

In this section, we discuss the evasion resistance of the various network-level features that form the inputs

to SNARE’s classification algorithm. We acknowledge that each of these features is, to some degree, evad-

able. Nevertheless, SNARE raises the bar significantly: we expect that these features may be difficult for a
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spammer to modify without significantly reducing the effectiveness of spam-bots. Although spammers might

adapt to evade some of the features below we believe that it will be difficult for a spammer to adjust all fea-

tures to pass through SNARE, particularly without significantly crippling the effectiveness of the spamming

botnet as a whole. We survey each of the features from Table 2 in turn.

AS number The AS numbers are more persistently associated with a sender’s identity than the IP address.

1) The illegal spamming mail server might only be set up within specific ASes without the network admin-

istrator shutting it down. 2) The compromised bots trend to aggregate at several ASes. Since the machines

in the same ASes are likely to have the same vulnerability, many hosts in a ASes might be compromised as

spamming bots. It is not easy for spammers to move the illegal mail servers or the bot armies to a different

AS, therefore AS numbers are robust to indicate malicious hosts.

Message length In our analysis, we discovered that the sizes of legitimate email messages tends to be much

more variable than that of spam (perhaps because spammers often use templates to sent out large quantities

of mail [19]). With knowledge of this feature, a spammer might start to randomize the lengths of their

email messages; this attack would not be difficult to mount, but it might restrict the types of messages that a

spammer could send or make it slightly more difficult to coordinate a massive spam campaign with similar

messages.

Nearest neighbor distances Nearest neighbor distances is another feature set that will be hard to modify.

Distances to k nearest neighbors effectively isolate existence of unusually large number of email servers

within a small sequence of IP addresses. If the spammers try to alter their neighborhood density, they will

not be able to use too many machines within a compromised subnet. This will significantly reduce the IP

space available to infect with bots and disrupt the ability of spam bots to proliferate.

Status of email service ports Some limitation might fail the active probes, e.g., the outgoing mail servers

use own protocol to mitigate messages (e.g., Google mail) or a firewall blocks the connections from out of

the domain. But the bots do not open such ports with high probability, and the attackers need to get root

privilege to enable those ports (which requires more sophisticated methods and resources). The basic idea is

to find out whether the sender is a legitimate mail server. Although we used active probes in SNARE, other

methods could facilitate the test, such as domain name checking or mail server authentication.

Sender-receiver geodesic distance The distribution of geodesic distances between the spammers’ physical

location and their target IP’s location is a result of the spammers’ necessity to reach as many target mail

boxes as possible and in the shortest possible time. If they had to modify their behavior so that their geodesic

distances are biased towards their neighborhood, they will be limited to predominantly spamming domains

that are hosted on servers located in a physical vicinity. This constraint would severely limit the virulence

of spamming botnets, as they will need to infect machines in each region of the world that they need to send

messages to.

Number of recipients We found that spam messages tend to have more recipients than legitimate messages;

a spammer could likely evade this feature by reducing the number of recipients on each message, but this

might possibly make sending the messages less efficient, and it might alter the sender behavior in other ways

that might make a spammer more conspicuous (e.g., forcing the spammer to open up more connections).

Time of day This feature may be less resistant to evasion than others. Having said that, spamming botnets’

diurnal pattern results from when the infected machines are switched on. For botnets to modify their diurnal

message volumes over the day to match the legitimate message patterns, they will have to lower their spam

volume in the evenings, especially between 3:00 p.m. and 9:00 p.m. and also reduce email volumes in the

afternoon. This will again reduce the ability of botnets to send large amounts of email.
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6.2 Other Limitations

We briefly discuss other current limitations of SNARE, including its ability to scale to a large number of

recipients and its ability to classify IP addresses that send both spam and legitimate mail.

Scale SNARE must ultimately scale to thousands of domains and process hundreds of millions of email

addresses per day. Unfortunately, even state-of-the-art machine learning algorithms are not well equipped to

process datasets this large; additionally, sending data to a central coordinator for training could potentially

consume considerably bandwidth. Although our evaluation suggests that SNARE’s classification is relatively

robust to sampling of training data, we intend to study further the best ways to sample the training data, or

perhaps even perform in-network classification.

Dual-purpose IP addresses Our conversations with large mail providers suggest that one of the biggest

emerging threats are “web bots” that send spam from Web-based email accounts [29]. As these types of

attacks develop, an increasing fraction of spam may be sent from IP addresses that also send significant

amounts of legitimate mail. These cases, where an IP address is neither good nor bad, will need more

sophisticated classifiers and features, perhaps involving timeseries-based features.

7 Related Work

We survey previous work on characterizing the network-level properties and behavior of email senders,

email sender reputation systems, and other email filtering systems that are not based on content.

Characterization studies Recent characterization studies have provided increasing evidence that spam-

mers’ have distinct network-level behavioral patterns. Ramachandran et al. [28] showed that spammers uti-

lize transient botnets to spam at low rate from any specific IP to any domain. Xie et al. [35] discovered

that a vast majority of mail servers running on dynamic IP address were used solely to send spam. In their

recently published study [34], they demonstrate a technique to identify bots by using signatures constructed

from URLs in spam messages. Unlike SNARE, their signature-based botnet identification differs heavily on

analyzing message content. Others have also examined correlated behavior of botnets, primarily for charac-

terization as opposed to detection [19, 25]. Pathak et al. [23] deployed a relay sinkhole to gather data from

multiple spam senders destined for multiple domains. They used this data to demonstrate how spammers

utilize compromised relay servers to evade detection; this study looked at spammers from multiple vantage

points, but focused mostly on characterizing spammers rather than developing new detection mechanisms.

Niu et al. analyzed network-level behavior of Web spammers (e.g., URL redirections and “doorway” pages)

and proposed using context-based analysis to defend against Web spam [22].

Sender reputation based on network-level behavior SpamTracker [28] is most closely related to

SNARE; it uses network-level behavioral features from data aggregated across multiple domains to infer

sender reputation. While that work initiated the idea of behavioral blacklisting, we have discovered many

other features that are more lightweight and more evasion-resistant than the single feature used in that

paper. Beverly and Sollins built a similar classifier based on transport-level characteristics (e.g., round-

trip times, congestion windows) [2], but their classifier is both heavyweight, as it relies on SVM, and it

also requires accepting the messages to gather the features. Various previous work has also attempted to

cluster email senders according to groups of recipients, often with an eye towards spam filtering [14,18,20],

which is similar in spirit to SNARE’s geodesic distance feature; however, these previous techniques typically

require both analysis of message contents, across a large number of recipients, or both, whereas SNARE can

operate on more lightweight features. Secure Computing [30] and Cisco IronPort [17] deploy spam filtering

appliances to hundreds or thousands of domains which then query the central server for sender reputation

and also provide meta-data about messages they receive; we are working with Secure Computing to deploy

SNARE as part of TrustedSource.
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Non-content spam filtering Trinity [4] is a distributed, content-free spam detection system for mes-

sages originating from botnets that relies on message volumes. The SpamHINTS project [8] also has the

stated goal of building a spam filter using analysis of network traffic patterns instead of the message content.

Clayton’s earlier work on extrusion detection involves monitoring of server logs at both the local ISP [6] as

well as the remote ISP [7] to detect spammers. This work has similar objectives as ours, but the proposed

methods focus more on properties related to SMTP sessions from only a single sender.

8 Conclusion

Although there has been much progress in content-based spam filtering, state-of-the-art systems for sender

reputation (e.g., DNSBLs) are relatively unresponsive, incomplete, and coarse-grained. Towards improving

this state of affairs, this paper has presented SNARE, a sender reputation system that can accurately and

automatically classify email senders based on features that can be determined early in a sender’s history—

sometimes after seeing only a single IP packet.

In addition to presenting a first-of-its kind automated classifier based on early, evasion-resistant features,

this paper has presented several additional contributions. First, in Section 3, we presented a detailed study

of various network-level characteristics of both spammers and legitimate senders, a detailed study of how

well each feature distinguishes spammers from legitimate senders, and explanations of why these features

are likely to exhibit differences between spammers and legitimate senders. Second, we use state-of-the-

art ensemble learning techniques to build a classifier using these features. Our results show that SNARE’s

performance is at least as good as static DNS-based blacklists, achieving a 70% detection rate for about

a 0.2% false positive rate. We show how SNARE performs for various subset of features and show that,

encouragingly, SNARE achieves this level of accuracy even when using only features that can be gleaned

from a single packet (plus auxiliary information). Third, we show how to further improve SNARE’s perfor-

mance by incorporating it into a larger spam-filtering framework, and by augmenting its classification with

whitelisting and retraining. Although SNARE’s performance is still not perfect, we believe that the benefits

are clear: unlike other email sender reputation system, SNARE is both automated and lightweight enough to

operate solely on network-level information. We are in the process of deploying SNARE as part of our own

dynamic sender reputation service. Even if others do not deploy SNARE’s algorithms exactly as we have

described, we believe that the collection of network-level features themselves may provide useful inputs to

other commercial and open-source spam filtering appliances.

Several areas of future work remain. Perhaps the most uncharted territory is that of using temporal

features to improve accuracy. All of SNARE’s features are essentially discrete variables, but we know from

experience that spammers and legitimate senders also exhibit different temporal patterns. In a future version

of SNARE, we aim to incorporate such temporal features into the classification engine. Another area for

improvement is making SNARE more evasion-resistant. Although we believe that it will be difficult for a

spammer to evade SNARE’s features and still remain effective, designing classifiers that are more robust in

the face of active attempts to evade and mis-train the classifier may be a promising area for future work.

References

[1] D. Alperovitch, P. Judge, and S. Krasser. Taxonomy of Email Reputation Systems. In Proc. of the First Inter-

national Workshop on Trust and Reputation Management in Massively Distributed Computing Systems (TRAM),

2007.

[2] R. Beverly and K. Sollins. Exploiting the Transport-Level Characteristics of Spam. In 5th Conference on Email

and Anti-Spam (CEAS), Mountain View, CA, July 2008.

[3] P. Boykin and V. Roychowdhury. Personal Email Networks: An Effective Anti-Spam Tool. IEEE Computer,

38(4):61–68, 2005.

19



[4] A. Brodsky and D. Brodsky. A distributed content independent method for spam detection. Proceedings of the

first conference on First Workshop on Hot Topics in Understanding Botnets table of contents, pages 3–3, 2007.

[5] C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge

Discovery, 2(2):121–167, 1998.

[6] R. Clayton. Stopping spam by extrusion detection. In First Conference of Email and Anti-Spam (CEAS), 2004.

[7] R. Clayton. Stopping Outgoing Spam by Examining Incoming Server Logs. In Second Conference on Email and

Anti-Spam (CEAS), 2005.

[8] R. Clayton. spamHINTS: Happily It’s Not The Same. http://www.spamhints.org/, 2007.

[9] Dnsbl resource: Statistics center. http://stats.dnsbl.com/, 2008.

[10] FCrDNS Lookup Testing. http://ipadmin.junkemailfilter.com/rdns.php.

[11] J. Friedman and B. Popescu. Gradient directed regularization. Stanford University, Technical Report, 2003.

[12] J. Friedman and B. Popescu. Predictive learning via rule ensembles. Annals of Applied Statistics (to appear),

2008.

[13] J. Golbeck and J. Hendler. Reputation network analysis for email filtering. Proceedings of the First Conference

on Email and Anti-Spam, pages 30–31, 2004.

[14] L. H. Gomes, F. D. O. Castro, R. B. Almeida, L. M. A. Bettencourt, V. A. F. Almeida, and J. M. Almeida.

Improving Spam Detection Based on Structural Similarity. In Proc. SRUTI Workshop, Cambridge, MA, July

2005.

[15] J. Goodman, G. Cormack, and D. Heckerman. Spam and the ongoing battle for the inbox. Communications of

the ACM, 50(2):24–33, 2007.

[16] E. Hulton and J. Goodman. Tutorial on junk email filtering. ICML, 2004.

[17] Ironport. http://www.ironport.com.

[18] L. Johansen, M. Rowell, K. Butler, and P. McDaniel. Email Communities of Interest. In 4th Conference on

Email and Anti-Spam (CEAS), Mountain View, CA, July 2007.

[19] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, V. Paxson, G. M. Voelker, and S. Savage. Spamalytics: an

Empirical Analysis of Spam Marketing Conversion. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS), Arlington, VA, Oct. 2008.

[20] H. Lam and D. Yeung. A Learning Approach to Spam Detection Based on Social Networks. In 4th Conference

on Email and Anti-Spam (CEAS), Mountain View, CA, July 2007.

[21] L. MaxMind. GeoIP API. http://www.maxmind.com/app/api, 2007.

[22] Y. Niu, Y.-M. Wang, H. Chen, M. Ma, and F. Hsu. A Quantitative Study of Forum Spamming Using Context-

based Analysis. In Proceedings of the 14th Annual Network and Distributed System Security Symposium (NDSS),

pages 79–92, San Diego, CA, Feb. 2007.

[23] A. Pathak, Y. Hu, C., and M. Mao, Z. Peeking into Spammer Behavior from a Unique Vantage Point. In First

USENIX Workshop on Large-Scale Exploits and Emergent Threats (LEET ’08), 2008.

[24] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[25] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach to understanding the botnet phe-

nomenon. In Proceedings of the 6th ACM SIGCOMM conference on Internet measurement, pages 41–52. ACM

New York, NY, USA, 2006.

[26] A. Ramachandran, D. Dagon, and N. Feamster. Can DNSBLs Keep Up with Bots? In 3rd Conference on Email

and Anti-Spam (CEAS), Mountain View, CA, July 2006.

[27] A. Ramachandran and N. Feamster. Understanding the Network-Level Behavior of Spammers. In Proceedings

of the ACM SIGCOMM. ACM Press New York, NY, 2006.

[28] A. Ramachandran, N. Feamster, and S. Vempala. Filtering Spam with Behavioral Blacklisting. In ACM Confer-

ence on Computer and Communications Security. ACM Press New York, NY, 2007.

[29] Private conversation with mark risher, yahoo mail., 2008.

[30] Secure Computing. http://www.securecomputing.com.

[31] SORBS: Spam and Open Relay Blocking System. http://www.au.sorbs.net/.

[32] Spamcop. http://www.spamcop.net/bl.shtml.

[33] SpamHaus IP Blocklist. http://www.spamhaus.org.

[34] Y. Xie, F. Yu, , K. Achan, R. Panigrahy, G. Hulten, and I. Osipkov. Spamming Bots: Signatures and Character-

istics. In Proceedings of ACM SIGCOMM, 2008.

[35] Y. Xie, F. Yu, K. Achan, E. Gilum, M. Goldszmidt, and T. Wobber. How Dynamic are IP Addresses. In

Proceedings of ACM SIGCOMM, 2007.

20


